IR-Spektren von 2,4,6-Tris(dimethylamino)- und 2,4,6-Tris[dimethylamino(d_{ϵ})]-borazinderivaten

Von

A. Meller und E. Schaschel

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Wien

Mit 2 Abbildungen

(Eingegangen am 26. Januar 1967)

Der Vergleich der Spektren von B-Dimethylaminoborazinen mit jenen der entsprechenden B-Hexadeuterodimethylaminoborazine zeigt starke Wechselwirkungen zwischen ν BN- und δ CH₃-Schwingungen, die ebenso wie in anderen N- und O-Methylborazinen zu einer Frequenzminderung der B—N-Hauptbande führen.

By comparison of the IR-spectra of B-dimethylamino-borazines with those of their hexadeuterodimethylamino analogous shows strong interactions of ν BN and δ CH₃-frequencies. ν BN frequencies are decreased like in other O- and N-methylborazines.

Deformationsschwingungen von über —N— und —O— an Boratome gebundenen Methylgruppen führen zu starken Wechselwirkungen mit B—N- und B—O-Valenzschwingungen, wie unlängst gezeigt wurde^{1, 2}. Ebenso wie die B—N-Ringschwingungen in B-Methoxyborazinen bei niedrigeren Wellenzahlen gefunden werden als jene in anderen B-Alkoxyborazinen, findet man auch in B-Methyl- bzw. B-Dimethylaminoborazinen die stärkere der beiden IR-aktiven Ringschwingungen bei ungewöhnlich niedrigen Wellenzahlen, wenn man z. B. die für die entsprechenden 1,3,5-Trimethylborazinderivate $(CH_3NBX)_3$ $[X = NHCH_3]$ bzw. $N(CH_3)_2$

¹ H. J. Becher und H. T. Baechle, Z. Physik. Chem. [Frankfurt] 48, 359 (1966).

² A. Meller und E. Schaschel, Mh. Chem. **98**, 390 (1967).

veröffentlichten Spektren^{3, 4} zuordnet. Die Frequenzwerte für die BN-Hauptbande der B-Methyl- bzw. B-Dimethylaminoderivate liegen dabei sogar tiefer als jene in den entsprechenden B-Chlorborazinen^{5, 6} (Tab. 1).

Tabelle 1.	Die	B-N-Hauptbande	in	Borazinderivaten	$(YNBX)_3$
(em^{-1})					

X Y	$\mathrm{CH_3}$	Н	C_5H_5
NH_2	1415	1480	1400
$\mathrm{NHC_2H_5}$	1405		
$N(CD_3)_2$	1402	1482	(1430 + 1290)
C1	1392	1442	1373
$NHCH_3$	1390		1403
$N(CH_3)_2$	1383	1434 + 1513	(1393 + 1292)

Der Ersatz der CH₃- durch CD₃-Gruppen führt indes zu einer Frequenzerhöhung der B—N-Hauptbande. In Tab. 2 sind Teilzuordnungen für stärkere Banden in $[(CH_3)NBN(CH_3)_2]_3$ und $[(CH_3)NBN(CD_3)_2]_3$ angegeben.

Die Spektren von $[HNBN(CH_3)_2]_3$ und $[HNBN(CD_3)_2]_3$ sind in Tab. 3 einander gegenübergestellt. Hier sind die Verhältnisse nicht so leicht zu überblicken. Infolge der wesentlich höheren Frequenzlage der B—N-Ringschwingung in N—H-Borazinen im Vergleich zu N-Organoborazinen kommt es hier im Dimethylderivat zur Ausbildung von Banden mit stark gemischtem Schwingungscharakter zwischen etwa 1400 und 1500 cm⁻¹, ebenso wie z. B im Dimethylaminodichlorboran¹. Wir stützen uns bei den Zuordnungen im $[HNBN(CH_3)_2]_3$ auf die von Becher und Baechle¹ für das $Cl_2BN(CH_3)_2$ gegebenen Zuordnungen, die durch Untersuchung des $Cl_2^{10}BN(CH_3)_2$ bestätigt sind. Das Spektrum von $[HNBN(CD_3)_2]_3$ zeigt, daß die von Gerrard und Mitarbeitern^{8, 9} für $[HNBN(CH_3)_2]_3$ gegebenen Zuordnungen nur teilweise zutreffen. Jedenfalls ist die Bande bei 1100 cm⁻¹ eine CH_3 -Pendelschwingung, während auf Grund der Frequenzverschiebung beim Übergang $CH_3 \rightarrow CD_3$ die Bande bei 1305 cm⁻¹ eher v_{as} NC_2 (verkoppelt mit BN) sein dürfte. Die Bande bei 1400 cm⁻¹ in $HNBN(CD_3)_2$

³ R. H. Toeniskoetter und F. R. Hall, Inorg. Chem. 2, 27 (1963).

⁴ V. Gutmann, A. Meller und R. Schlegel, Mh. Chem. **94**, 1076 (1963).

⁵ H. Watanabe, M. Narisada, T. Nakagawa und M. Kubo, Spectrochim. Acta [London] 16, 78 (1960).

⁶ A. Meller und R. Schlegel, Mh. Chem. 95, 382 (1964).

⁷ A. Meller, IR-Spektren organischer Bor-Stickstoffverbindungen, Organomet. Chem. Rev. 2, 34 (1967).

⁸ W. Gerrard, H. R. Hudson, E. F. Mooney, I. M. Stripp und H. A. Willis, Spectrochim. Acta [London] 18, 149 (1962).

 $^{^{6}}$ W. Gerrard, E. F. Mooney und H. A. Willis, Spectrochim. Acta [London] 18, 155 (1962).

Tabelle 2. IR-Spektren von N-Trimethyl-B-tris (dimethylamino)borazinderivaten in CCl₄ (cm⁻¹)

Zuordnung	$[(\mathrm{CH_3})\mathrm{NBN}(\mathrm{CH_3})_2]_3$	$[(\mathrm{CH_3})\mathrm{NBN}(\mathrm{CD_3})_2]_3$	Zuordnung
	2976 m	2945 m)	
	$2897~\mathrm{m}$	$2900~\mathrm{m}~$ $\}$	$ u \mathrm{CH}_3$
$_{ m V}{ m CH_3}$	$2860 \mathrm{\ sh}$	$2860~\mathrm{w}$)	
	$2837 \mathrm{\ s}$		
	$2786~\mathrm{m}$		
		2230 m	
	1740 vw	2160 w	$ν$ $\mathrm{CD_3}$
	2.20 ***	2105 w	. 025
		$2049 \mathrm{ s}$	
	(1501 s	4.404	
δ CH ₃	1471 m	1481 m }	$\delta \mathrm{CH_3}$
	1452 s	$1440~\mathrm{sh}~\bigr\}$	· ·
	(1415 m		
DM	$1392 \mathrm{sh}$	1410 sh)	νBN
νBN	$\{1383~\mathrm{es}$	1402 es	A DIA
ν BN (2 · E') (?)	$1350 \mathrm{\ s}$	1343 s	ν BN (2 · E') (?)
, , , ,	$1250~\mathrm{vw}$	$1232\mathrm{s}$, , , , ,
	$1219 \mathrm{\ w}$	$1210~\mathrm{w}$	
	$1193 \mathrm{\ m}$	$1183 \mathrm{\ w}$	
	$1145 \mathrm{w}$		
		1120 vw	$\delta\mathrm{CD}_3$
. CIT	(1112 m		
ρCH ₃	1103 ss		
		$1060 \mathrm{\ s}$	δ CD $_3$
	$1070 \mathrm{\ w}$		
	$1043~\mathrm{w}$	000	
	$953~\mathrm{w}$	980 w	
	200	912 w	CID
	885 vw	899 vw	$ ho ext{ CD}_3$
		840 w	o CD.
		$830~\mathrm{vw}$	$ ho ext{ CD}_3$
NT (DN) 1-f	$726 \mathrm{sh}$	$724~\mathrm{w}$	$= N_3 (BN)_3 def.$
$= N_3 (BN)_3 def.$	$718 \mathrm{ s}$	$714~\mathrm{m}$	- 113 (D11)3 det.
	665 w		

entspricht sicher der zweiten IR-aktiven Ringschwingung der Klasse E', die von Niedenzu et al. 10 im Borazin bei 1406 cm $^{-1}$ zugeordnet wurde. Noch völlig ungeklärt ist die Zuordnung der Bande um 1370 cm $^{-1}$, die in vielen N-H-Borazinderivaten auftritt.

Wegen der starken Kopplungen in der Fingerprintregion sind eindeutige Zuordnungen schwer zu geben, zumal einzelne Banden nur durch

¹⁰ K. Niedenzu, W. Sawodny, H. Watanabe, J. W. Dawson, T. Totani und W. Weber, Inorg. Chem. 2 (1967), im Druck.

Tabelle 3. IR-Spektren von B-Trisdimethylaminoborazinen in ${\rm CCl_4~(cm^{-1})}$

Zuordnung	[HNBN(CH ₃) ₂] ₃	[HNBN(CD ₃) ₂] ₉	Zuordnung
νNH	$3475~\mathrm{m}$	$3475~\mathrm{m}$	νNH
$ u { m CH_3}$	$egin{cases} 2975 \ \mathrm{m} \\ 2920 \ \mathrm{m} \\ 2873 \ \mathrm{s} \\ 2798 \ \mathrm{s} \end{cases}$	$\begin{array}{c} 2230 \text{ m} \\ 2170 \text{ w} \\ 2130 \text{ w} \\ 2055 \text{ s} \end{array} \right)$	$ u\mathrm{CD_3}$
	1745 vw $1625 vw$	$\begin{array}{c} 1755 \text{ vw} \\ 1580 \text{ vw} \end{array}$	
δCH ₃ , νBN	$\begin{cases} 1550 \text{ sh} \\ 1530 \text{ sh} \\ 1513 \text{ es} \end{cases}$		
		$egin{array}{c} 1510 ext{ sh} \ 1500 ext{ sh} \ 1482 ext{ es} \end{array} ight\}$	νBN
$\delta \mathrm{CH_3}$	$1465~\mathrm{s}$		
ν BN, δ CH ₃ δ CH ₃	1434 s 1419 m	$1450~\mathrm{sh}$	
	1374 s 1320 vw	$1400 \mathrm{\ m}$ s $1370 \mathrm{\ m}$ s	ν BN (2 · Ε΄)
$v_{as}NC_2$ verk.	1306 m	$1283 \mathrm{\ m}\mathrm{s}$ $1235 \mathrm{\ vw}$	$v_{as} NC_2 verk.$
ρCH ₃	1197 w $1160 ss$	1195 vw 1060 m (b) 1011 m	$\delta \mathrm{CD}_3$
	$978~\mathrm{m}$	918 w (b) 859 m	ρ CD ₃ ρ CD ₃
$=\mathrm{N}_3(\mathrm{BN})_3\mathrm{def}.$	$\begin{cases} 702~\mathrm{sh} \\ 697~\mathrm{m} \\ 686~\mathrm{s} \end{cases}$	$egin{array}{c} 701 ext{ sh} \ 696 ext{ m} \ 684 ext{ s} \end{array} ight\}$	$=\mathrm{N}_{3}(\mathrm{BN})_{3}\mathrm{def}$
		667 w	

Kopplung intensiviert werden (δ NH), aber keine charakteristischen Gruppenfrequenzen darstellen. Analoge Erscheinungen sind auch im 1,3,5-Trimethylborazin durch Kopplung mit δ BH zu beobachten¹¹.

Die Spektren der N-Phenylderivate, $[C_6H_5NBN(CH_3)_2]_3$ und $[C_6H_5NBN(CD_3)_2]_3$, zeigen ein von den meisten anderen Phenylborazinen völlig verschiedenes Bild. Es treten zwei etwa gleich starke, breite Banden mit BN-Charakter bei etwa 1400 cm $^{-1}$ und 1300 cm $^{-1}$ auf. Ein ganz

 $^{^{11}\} A.\ Meller$ und $M.\ Wechsberg,\ Mh.\ Chem.\ 98,\ 690\ (1967).$

Tabelle 4. IR-Spektren von N-Triphenyl-B-tris (dimethylamino)-borazinderivaten in CCl₄ (cm⁻¹)

Zuordnung	$(\mathrm{C_6H_5NBN}(\mathrm{CH_3})_2]_3$	$[\mathrm{C_6H_6NBN}(\mathrm{CH_3})_2]_3$	Zuordnung
CII	${3060 \text{ w} \atop 3020 \text{ w}}$	$egin{array}{c} 3080 \ { m w} \\ 3060 \ { m w} \end{array} \Big\}$	v CH _{ar}
ν CH _{ar}	$^{3020}_{2985}$ w	$\frac{3000 \text{ W}}{3027 \text{ m}}$	VCIIar
	$(2915 \mathrm{m})$	2960 vw	
ν CH ₃	$egin{cases} 2865 ext{ s} \ 2790 ext{ m} \end{cases}$		
	,	2240 w	
		$egin{array}{cccc} 2170 \ { m m} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ u \mathrm{CD_3}$
		2057 s	
		1730 vw	
ar	1598 m	$1598 \mathrm{\ m}$	ar
s Ott	1510 w	1409	0.00
$\delta \mathrm{CH_3} + \mathrm{ar}$	$1494~\mathrm{s}$ $1452~\mathrm{m}$	$1493~\mathrm{m} \ 1452~\mathrm{w}$	ar
$\delta \mathrm{CH_3}$	1492 III	1102 W	
DM	∫1410 sh		
νBN	1393 es (b)	1430 es (b) $1400 sh (b)$	v BN
		1400 sh (b) ∫	7.27.1
	$1360~\mathrm{sh}$	1340 m (b)	
	$1310~\mathrm{sh}$		
ν BN verk.	1292 ss (b)	1290 ss (b)	u BN verk.
	$1223~\mathrm{s}$	$1220 \mathrm{\ s}$	
	$1197 \mathrm{m}$		
		1190 w	
	1145 w	1130 w	
ar	$1070 \mathrm{\ m}$	1080 w	ar
	4000	1050 m	$\delta \mathrm{CD}_3$
ar	$1030 \mathrm{\ w}$	1030 w	ar
		1000 vw	
		$970~\mathrm{w}$ $920~\mathrm{w}$	
		920 w 840 w	$ ho \ \mathrm{CD_3}$
	$698 \mathrm{\ s}$	698 s	ar
ar	665 w	667 w	co.r
	OOO W	00, 17	

analoges Spektrum gibt auch das (C₆F₅NBN(CH₃)₂]₃¹². Dies läßt auf eine starke Störung der Symmetrie dieser Verbindungen durch die sperrigen Dimethylaminogruppen schließen. Einige Aromatenbanden sind eindeutig festzulegen. Weitergehende Zuordnungen in der Fingerprintregion sind indes derzeit nicht möglich.

 $^{^{12}}$ A. Meller und M. Wechsberg, unveröffentlicht.

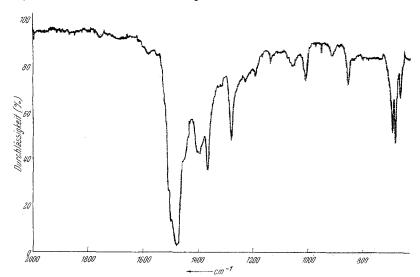


Abb. 1. 2,4,6-Tris(dimethylamino)borazin in CCl4

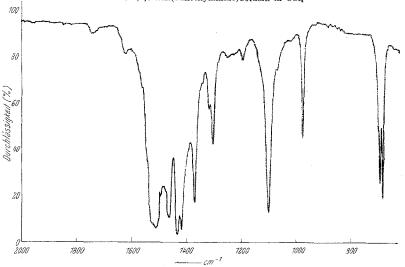


Abb. 2. 2,4,6-Tris[dimethyl(d6)amino]borazin in CCl4

Die Daten der Dimethylaminoverbindungen und ihre Darstellung sind in der Literatur $^{3, 13, 14}$ beschrieben. Die Hexadeuterodimethylaminoborazine wurden analog dargestellt und zeigen dieselben Daten.

Der Owens-Illinois Inc., Toledo/Ohio (USA) danken wir für die Unterstützung der Untersuchungen, Herrn Prof. Dr. V. Gutmann für seine große Hilfsbereitschaft.

¹³ K. Niedenzu und J. W. Dawson, J. Amer. Chem. Soc. **81**, 3561 (1959).

¹⁴ W. Gerrard, H. R. Hudson und E. F. Mooney, J. Chem. Soc. [London] **1962**, 113.